Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 402
Filtrar
1.
Sci Total Environ ; 926: 172027, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38552982

RESUMO

Long-term exposure to fine particulate matter (PM2.5) posed injury for gastrointestinal and respiratory systems, ascribing with the lung-gut axis. However, the cross-talk mechanisms remain unclear. Here, we attempted to establish the response networks of lung-gut axis in mice exposed to PM2.5 at environmental levels. Male Balb/c mice were exposed to PM2.5 (dose of 0.1, 0.5, and 1.0 mg/kg) collected from Chengdu, China for 10 weeks, through intratracheally instillation, and examined the effect of PM2.5 on lung functions of mice. The changes of lung and gut microbiota and metabolic profiles of mice in different groups were determined. Furthermore, the results of multi-omics were conjointly analyzed to elucidate the primary microbes and the associated metabolites in lung and gut responsible for PM2.5 exposure. Accordingly, the cross-talk network and key pathways between lung-gut axis were established. The results indicated that exposed to PM2.5 0.1 mg/kg induced obvious inflammations in mice lung, while emphysema was observed at 1.0 mg/kg. The levels of metabolites guanosine, hypoxanthine, and hepoxilin B3 increased in the lung might contribute to lung inflammations in exposure groups. For microbiotas in lung, PM2.5 exposure significantly declined the proportions of Halomonas and Lactobacillus. Meanwhile, the metabolites in gut including L-tryptophan, serotonin, and spermidine were up-regulated in exposure groups, which were linked to the decreasing of Oscillospira and Helicobacter in gut. Via lung-gut axis, the activations of pathways including Tryptophan metabolism, ABC transporters, Serotonergic synapse, and Linoleic acid metabolism contributed to the cross-talk between lung and gut tissues of mice mediated by PM2.5. In summary, the microbes including Lactobacillus, Oscillospira, and Parabacteroides, and metabolites including hepoxilin B3, guanosine, hypoxanthine, L-tryptophan, and spermidine were the main drivers. In this lung-gut axis study, we elucidated some pro- and pre-biotics in lung and gut microenvironments contributed to the adverse effects on lung functions induced by PM2.5 exposure.


Assuntos
Poluentes Atmosféricos , Lesão Pulmonar , Masculino , Camundongos , Animais , Lesão Pulmonar/induzido quimicamente , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/metabolismo , Triptofano , Multiômica , Espermidina/metabolismo , Espermidina/farmacologia , Pulmão , Material Particulado/toxicidade , Material Particulado/metabolismo , Guanosina/metabolismo , Guanosina/farmacologia , Hipoxantinas/metabolismo , Hipoxantinas/farmacologia
2.
Sci Total Environ ; 922: 171271, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428592

RESUMO

Extreme wildfire events are on the rise globally, and although substantial wildfire emissions may find their way into the ocean, their impact on coral reefs remains uncertain. In a five-week laboratory experiment, we observed a significant reduction in photosynthesis in coral symbionts (Porites lutea) when exposed to fine particulate matter (PM2.5) from wildfires. At low PM2.5 level (2 mg L-1), the changes in δ13C and δ15N values in the host and symbiotic algae suggest reduced autotrophy and the utilization of wildfire particulates as a source of heterotrophic nutrients. This adaptive strategy, characterized by an increase in heterotrophy, sustained some aspects of coral growth (total biomass, proteins and lipids) under wildfire stress. Nevertheless, at high PM2.5 level (5 mg L-1), both autotrophy and heterotrophy significantly decreased, resulting in an imbalanced coral-algal nutritional relationship. These changes were related to light attenuation in seawater and particulate accumulation on the coral surface during PM2.5 deposition, ultimately rendering the coral growth unsustainable. Further, the calcification rates decreased by 1.5 to 1.85 times under both low and high levels of PM2.5, primarily affected by photosynthetic autotrophy rather than heterotrophy. Our study highlights a constrained heterotrophic plasticity of corals under wildfire stress. This limitation may restrict wildfire emissions as an alternative nutrient source to support coral growth and calcification, especially when oceanic food availability or autotrophy declines, as seen during bleaching induced by the warming ocean.


Assuntos
Antozoários , Incêndios Florestais , Animais , Antozoários/fisiologia , Processos Heterotróficos , Recifes de Corais , Material Particulado/toxicidade , Material Particulado/metabolismo
3.
Ecotoxicol Environ Saf ; 273: 116162, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458067

RESUMO

Airborne fine particulate matter (PM2.5) can cause pulmonary inflammation and even fibrosis, however, the underlying molecular mechanisms of the pathogenesis of PM2.5 exposure have not been fully appreciated. In the present study, we explored the dynamics of glycolysis and modification of histone lactylation in macrophages induced by PM2.5-exposure in both in vivo and in vitro models. Male C57BL/6 J mice were anesthetized and administrated with PM2.5 by intratracheal instillation once every other day for 4 weeks. Mouse RAW264.7 macrophages and alveolar epithelial MLE-12 cells were treated with PM2.5 for 24 h. We found that PM2.5 significantly increased lactate dehydrogenase (LDH) activities and lactate contents, and up-regulated the mRNA expression of key glycolytic enzymes in the lungs and bronchoalveolar lavage fluids of mice. Moreover, PM2.5 increased the levels of histone lactylation in both PM2.5-exposed lungs and RAW264.7 cells. The pro-fibrotic cytokines secreted from PM2.5-treated RAW264.7 cells triggered epithelial-mesenchymal transition (EMT) in MLE-12 cells through activating transforming growth factor-ß (TGF-ß)/Smad2/3 and VEGFA/ERK pathways. In contrast, LDHA inhibitor (GNE-140) pretreatment effectively alleviated PM2.5-induced pulmonary inflammation and fibrosis via inhibiting glycolysis and subsequent modification of histone lactylation in mice. Thus, our findings suggest that PM2.5-induced glycolysis and subsequent modification of histone lactylation play critical role in the PM2.5-associated pulmonary fibrosis.


Assuntos
Pneumonia , Fibrose Pulmonar , Masculino , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Histonas/metabolismo , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo , Material Particulado/metabolismo , Macrófagos , Glicólise
4.
Environ Pollut ; 348: 123841, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521398

RESUMO

Short-term exposure to fine particulate matter (PM2.5) is associated with the activation of adverse inflammatory responses, increasing the risk of developing acute respiratory diseases, such as those caused by pathogen infections. However, the functional mechanisms underlying this evidence remain unclear. In the present study, we generated a zebrafish model of short-term exposure to a specific PM2.5, collected in the northern metropolitan area of Milan, Italy. First, we assessed the immunomodulatory effects of short-term PM2.5 exposure and observed that it elicited pro-inflammatory effects by inducing the expression of cytokines and triggering hyper-activation of both neutrophil and macrophage cell populations. Moreover, we examined the impact of a secondary infectious pro-inflammatory stimulus induced through the injection of Pseudomonas aeruginosa lipopolysaccharide (Pa-LPS) molecules after exposure to short-term PM2.5. In this model, we demonstrated that the innate immune response was less responsive to a second pro-inflammatory infectious stimulus. Indeed, larvae exhibited dampened leukocyte activation and impaired production of reactive oxygen species. The obtained results indicate that short-term PM2.5 exposure alters the immune microenvironment and affects the inflammatory processes, thus potentially weakening the resistance to pathogen infections.


Assuntos
Poluentes Atmosféricos , Material Particulado , Animais , Material Particulado/toxicidade , Material Particulado/metabolismo , Peixe-Zebra/metabolismo , Citocinas/metabolismo , Espécies Reativas de Oxigênio , Imunidade Inata , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise
5.
Environ Pollut ; 347: 123674, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458517

RESUMO

Fine particulate matter (PM2.5) has been linked to increased severity and incidence of airway diseases, especially chronic obstructive pulmonary disease (COPD) and asthma. Airway remodeling is an important event in both COPD and asthma, and airway smooth muscle cells (ASMCs) are key cells which directly involved in airway remodeling. However, it was unclear how PM2.5 affected ASMCs. This study investigates the effects of PM2.5 on airway smooth muscle and its mechanism. We first showed that inhaled particulate matter was distributed in the airway smooth muscle bundle, combined with increased airway smooth muscle bundle and collagen deposition in vivo. Then, we demonstrated that PM2.5 induced up-regulation of collagen-I and alpha-smooth muscle actin (α-SMA) expression in rat and human ASMCs in vitro. Next, we found PM2.5 led to rat and human ASMCs senescence and exhibited senescence-associated secretory phenotype (SASP) by autophagy-induced GATA4/TRAF6/NF-κB signaling, which contributed to collagen-I and α-SMA synthesis as well as airway smooth muscle remodeling. Together, our results provided evidence that SASP induced by PM2.5 in airway smooth muscle cells prompted airway remodeling.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Ratos , Animais , Remodelação das Vias Aéreas , Fenótipo Secretor Associado à Senescência , Miócitos de Músculo Liso , Asma/metabolismo , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/metabolismo , Colágeno Tipo I , Proliferação de Células , Material Particulado/metabolismo , Células Cultivadas
6.
Ecotoxicol Environ Saf ; 274: 116232, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493701

RESUMO

Fine particulate matter (PM2.5) exposure is strongly associated with vascular endothelial senescence, a process implicated in cardiovascular diseases. While there is existing knowledge on the impact of Lycium barbarum polysaccharide (LBP) on vascular endothelial damage, the protective mechanism of LBP against PM2.5-induced vascular endothelial senescence remains unclear. In this study, we investigated the impact of PM2.5 exposure on vascular endothelial senescence and explored the intervention effects of LBP in human umbilical vein endothelial cells (HUVECs). We found that PM2.5 exposure dose-dependently reduced cell viability and proliferation in HUVECs while increasing the production of reactive oxygen species (ROS), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Additionally, PM2.5 exposure inhibited the activity of superoxide dismutase (SOD). Notably, PM2.5 exposure induced autophagy impairments and cellular senescence. However, LBP mitigated PM2.5-induced cell damage. Further studies demonstrated that correcting autophagy impairment in HUVECs reduced the expression of the senescence markers P16 and P21 induced by PM2.5. This suggests the regulatory role of autophagy in cellular senescence and the potential of LBP in improving HUVECs senescence. These findings provide novel insights into the mechanisms underlying PM2.5-induced cardiovascular toxicity and highlight the potential of LBP as a therapeutic agent for improving vascular endothelial health.


Assuntos
Medicamentos de Ervas Chinesas , Peróxido de Hidrogênio , Lycium , Humanos , Células Endoteliais da Veia Umbilical Humana , Peróxido de Hidrogênio/metabolismo , Material Particulado/metabolismo , Senescência Celular
7.
Environ Pollut ; 347: 123686, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431248

RESUMO

PM2.5 is known to induce lung injury, but its toxic effects on lung regenerative machinery and the underlying mechanisms remain unknown. In this study, primary mouse alveolar type 2 (AT2) cells, considered stem cells in the gas-exchange barrier, were sorted using fluorescence-activated cell sorting. By developing microfluidic technology with constricted microchannels, we observed that both passage time and impedance opacities of mouse AT2 cells were reduced after PM2.5, indicating that PM2.5 induced a more deformable mechanical property and a higher membrane permeability. In vitro organoid cultures of primary mouse AT2 cells indicated that PM2.5 is able to impair the proliferative potential and self-renewal capacity of AT2 cells but does not affect AT1 differentiation. Furthermore, cell senescence biomarkers, p53 and γ-H2A.X at protein levels, P16ink4a and P21 at mRNA levels were increased in primary mouse AT2 cells after PM2.5 stimulations as shown by immunofluorescent staining and quantitative PCR analysis. Using several advanced single-cell technologies, this study sheds light on new mechanisms of the cytotoxic effects of atmospheric fine particulate matter on lung stem cell behavior.


Assuntos
Células Epiteliais Alveolares , Pulmão , Camundongos , Animais , Células Epiteliais Alveolares/metabolismo , Pulmão/metabolismo , Diferenciação Celular , Senescência Celular , Material Particulado/metabolismo
8.
J Hazard Mater ; 469: 133958, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479138

RESUMO

BACKGROUND: A recently discovered risk factor for chronic liver disease is ambient fine particulate matter (PM2.5). Our research aims to elucidate the effects of PM2.5 on liver injury and the potential molecular mechanisms. METHODS AND RESULTS: A population-based longitudinal study involving 102,918 participants from 15 Chinese cities, using linear mixed-effect models, found that abnormal alterations in liver function were significantly associated with long-term exposure to PM2.5. The serum levels of alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, direct bilirubin, and triglyceride increased by 2.05%, 2.04%, 0.58%, 2.99%, and 1.46% with each 10 µg/m3 increase in PM2.5. In contrast, the serum levels of total protein, albumin, and prealbumin decreased by 0.27%, 0.48%, and 2.42%, respectively. Mice underwent chronic inhalation exposure to PM2.5 experienced hepatic inflammation, steatosis and fibrosis. In vitro experiments found that hepatocytes experienced an inflammatory response and lipid metabolic dysregulation due to PM2.5, which also activated hepatic stellate cells. The down-regulation and mis-localization of polarity protein Par3 mediated PM2.5-induced liver injury. CONCLUSIONS: PM2.5 exposure induced liver injury, mainly characterized by steatosis and fibrosis. The down-regulation and mis-localization of Par3 were important mechanisms of liver injury induced by PM2.5.


Assuntos
Poluentes Atmosféricos , Doença Hepática Crônica Induzida por Substâncias e Drogas , Fígado Gorduroso , Humanos , Camundongos , Animais , Material Particulado/toxicidade , Material Particulado/metabolismo , Estudos Longitudinais , Fígado/metabolismo , Fibrose , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/metabolismo
9.
Ecotoxicol Environ Saf ; 273: 116090, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364346

RESUMO

Airway epithelium, the first defense barrier of the respiratory system, facilitates mucociliary clearance against inflammatory stimuli, such as pathogens and particulates inhaled into the airway and lung. Inhaled particulate matter 2.5 (PM2.5) can penetrate the alveolar region of the lung, and it can develop and exacerbate respiratory diseases. Although the pathophysiological effects of PM2.5 in the respiratory system are well known, its impact on mucociliary clearance of airway epithelium has yet to be clearly defined. In this study, we used two different 3D in vitro airway models, namely the EpiAirway-full-thickness (FT) model and a normal human bronchial epithelial cell (NHBE)-based air-liquid interface (ALI) system, to investigate the effect of diesel exhaust particles (DEPs) belonging to PM2.5 on mucociliary clearance. RNA-sequencing (RNA-Seq) analyses of EpiAirway-FT exposed to DEPs indicated that DEP-induced differentially expressed genes (DEGs) are related to ciliary and microtubule function and inflammatory-related pathways. The exposure to DEPs significantly decreased the number of ciliated cells and shortened ciliary length. It reduced the expression of cilium-related genes such as acetylated α-tubulin, ARL13B, DNAH5, and DNAL1 in the NHBEs cultured in the ALI system. Furthermore, DEPs significantly increased the expression of MUC5AC, whereas they decreased the expression of epithelial junction proteins, namely, ZO1, Occludin, and E-cadherin. Impairment of mucociliary clearance by DEPs significantly improved the release of epithelial-derived inflammatory and fibrotic mediators such as IL-1ß, IL-6, IL-8, GM-CSF, MMP-1, VEGF, and S100A9. Taken together, it can be speculated that DEPs can cause ciliary dysfunction, hyperplasia of goblet cells, and the disruption of the epithelial barrier, resulting in the hyperproduction of lung injury mediators. Our data strongly suggest that PM2.5 exposure is directly associated with ciliary and epithelial barrier dysfunction and may exacerbate lung injury.


Assuntos
Lesão Pulmonar , Emissões de Veículos , Humanos , Emissões de Veículos/toxicidade , Lesão Pulmonar/metabolismo , Mucosa Respiratória , Material Particulado/metabolismo , Células Epiteliais , Epitélio
10.
Ecotoxicol Environ Saf ; 273: 116136, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387142

RESUMO

As a dominating air pollutant, atmospheric fine particulate matter within 2.5 µm in diameter (PM2.5) has attracted increasing attention from the researchers all over the world, which will lead to various adverse effects on the central nervous system (CNS), yet the potential mechanism is unclear. In this study, the microglia (BV2 cell line) were exposed to different concentrations of PM2.5 (5, 10 and 20 µg/cm2) for 24 h. It was found that PM2.5 could result in adverse effects on microglia such as decreased cell viability, structural damage and even cell death. And it was reported that long non-coding RNAs (lncRNAs) could participate in multitudinous neurological diseases. Therefore, the microarray analysis was conducted in order to disclose the underlying neurotoxicity mechanism of PM2.5 by ascertaining the differentially expressed lncRNAs (DElncRNAs). The consequences indicated that the DElncRNAs were enriched in various biological pathways, including ferroptosis, IL-17 signaling pathway and NOD-like receptor signaling pathway. Moreover, the cis- and trans-regulated mRNAs by DElncRNAs as well as the corresponding transcriptional factors (TFs) were observed, such as CEBPA, MYC, MEIS1 and KLF4. In summary, our study supplies some candidate libraries and potential preventive target against PM2.5-induced toxicity through targeting lncRNAs. Furthermore, the post-transcriptional regulation will contribute to the future research on PM2.5-induced neurotoxicity.


Assuntos
Poluentes Atmosféricos , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Microglia/metabolismo , Material Particulado/toxicidade , Material Particulado/metabolismo , Poluentes Atmosféricos/toxicidade , Análise em Microsséries
11.
Ecotoxicology ; 33(2): 151-163, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38329639

RESUMO

Suspended particulate matter (SPM), an important component of the natural water environment, can act as a carrier of many pollutants that affect aquatic organisms. In the present study, the effect of SPM obtained from Jinjiang Estuary on the physiological, biochemical, and photosynthetic properties of typical freshwater algae (Chlorella pyrenoidosa) was investigated. The results showed that under different concentrations of SPM treatment, the superoxide dismutase (SOD), catalase (CAT) activities, and malondialdehyde (MDA) content of C. pyrenoidosa increased, but the soluble protein content decreased. SPM with different particle sizes had less effect on SOD of C. pyrenoidosa, but showed a promoting effect on CAT and MDA as well as soluble protein content. In terms of photosynthetic activity, high concentrations (70, 90 mg/L) and small particle sizes (0-75, 75-120 µm) of SPM had a greater effect on the chlorophyll a content of C. pyrenoidosa. In addition, different concentrations of SPM had no significant effect on the potential photosynthetic activity of PS II (Fv/F0) and the maximum quantum yield of PS II (Fv/Fm), but the inhibition of the initial slope (alpha), the maximum photosynthetic rate (ETRmax) and the semi-light saturation point (Ik) increased with the increase of SPM concentration. Fv/F0, ETRmax, and Ik of C. pyrenoidosa showed some degree of recovery after inhibition in the presence of SPM of different particle sizes.


Assuntos
Chlorella , Poluentes Químicos da Água , Clorofila A/metabolismo , Clorofila A/farmacologia , Material Particulado/toxicidade , Material Particulado/metabolismo , Estuários , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/análise
12.
Toxicon ; 241: 107650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360299

RESUMO

Particulate matter (PM) comprises a hazardous mixture of inorganic and organic particles that carry health risks. Inhaling fine PM particles with a diameter of ≤2.5 µm (PM2.5) can promote significant lung damage. Hederacolchiside A1 (HA1) exhibits notable in vivo antitumor effects against various solid tumors. However, our understanding of its therapeutic potential for individuals with PM2.5-induced lung injuries remains limited. Here, we explored the protective properties of HA1 against lung damage caused by PM2.5 exposure. HA1 was administered to the mice 30 min after intratracheal tail vein injection of PM2.5. Various parameters, such as changes in lung tissue wet/dry (W/D) weight ratio, total protein/total cell ratio, lymphocyte counts, inflammatory cytokine levels in bronchoalveolar lavage fluid (BALF), vascular permeability, and histology, were assessed in mice exposed to PM2.5. Our data showed that HA1 mitigated lung damage, reduced the W/D weight ratio, and suppressed hyperpermeability caused by PM2.5 exposure. Moreover, HA1 effectively decreased plasma levels of inflammatory cytokines in those exposed to PM2.5, including tumor necrosis factor-α, interleukin-1ß, and nitric oxide, while also lowering the total protein concentration in BALF and successfully alleviating PM2.5-induced lymphocytosis. Furthermore, HA1 significantly decreased the expression levels of toll-like receptor 4 (TLR4), myeloid differentiation primary response (MyD) 88, and autophagy-related proteins LC3 II and Beclin 1 but increased the protein phosphorylation of the mammalian target of rapamycin (mTOR). The anti-inflammatory characteristics of HA1 highlights its potential as a promising therapeutic agent for mitigating PM2.5-induced lung injuries by modulating the TLR4-MyD88 and mTOR-autophagy pathways.


Assuntos
Lesão Pulmonar , Camundongos , Animais , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Material Particulado/toxicidade , Material Particulado/metabolismo , Receptor 4 Toll-Like/metabolismo , Pulmão , Serina-Treonina Quinases TOR/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Citocinas/metabolismo , Mamíferos/metabolismo
13.
Sci Total Environ ; 919: 170893, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38342450

RESUMO

An investigation of the potential role of lysosomes in airborne particulate matter (APM) induced health risks is essential to fully comprehend the pathogenic mechanisms of respiratory diseases. It is commonly accepted that APM-induced lung injury is caused by oxidative stress, inflammatory responses, and DNA damage. In addition, there exists abundant evidence that changes in lysosomal function are essential for cellular adaptation to a variety of particulate stimuli. This review emphasizes that disruption of the lysosomal structure/function is a key step in the cellular metabolic imbalance induced by APMs. After being ingested by cells, most particles are localized within lysosomes. Thus, lysosomes become the primary locus where APMs accumulate, and here they undergo degradation and release toxic components. Recent studies have provided incontrovertible evidence that a wide variety of APMs interfere with the normal function of lysosomes. After being stimulated by APMs, lysosome rupture leads to a loss of lysosomal acidic conditions and the inactivation of proteolytic enzymes, promoting an inflammatory response by activating the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. Moreover, APMs interfere with autophagosome production or block autophagic flux, resulting in autophagy dysfunction. Additionally, APMs disrupt the normal function of lysosomes in iron metabolism, leading to disruption on iron homeostasis. Therefore, understanding the impacts of APM exposure from the perspective of lysosomes will provide new insights into the detrimental consequences of air pollution.


Assuntos
Lisossomos , Material Particulado , Material Particulado/toxicidade , Material Particulado/metabolismo , Inflamassomos/metabolismo , Autofagia , Ferro/metabolismo
14.
Environ Sci Pollut Res Int ; 31(6): 8768-8780, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180673

RESUMO

Particulate matter (PM) has been reported to be one of the risk factor for COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, although the ocular surface is deeply affected by both PM exposure and SARS-COV-2 infection, no studies have investigated the effects of PM exposure on the ocular route of SARS-COV-2 infection. To this end, we explored the effects of PM on the expression of SARS-COV-2-associated receptors and proteins in ocular surface. Herein, short- and long-term PM-exposed rat models were established by topically administering PM for 3 and 10 days, respectively. Immortalized human corneal epithelial cells (HCECs) and human conjunctival epithelial cells (HCjECs) were exposed to PM. ACE2, TMPRSS2, CD147, and ADAM17 expression levels were measured by western blot analysis. Our results show that short-term PM exposure had little effect on the expressions of ACE2, TMPRSS2, and CD147 in ocular surface tissues. However, long-term PM exposure decreased the ACE2 expression in conjunctival tissues and increased the CD147 expression in corneal or conjunctival tissues. PM exposure reduced the ACE2 expression by increasing the ADAM17 expression and ACE2 shedding level in HCECs and HCjECs. Our findings suggest that long-term PM exposure down-regulate the expression of the SARS-CoV-2 receptor ACE2 in conjunctival tissues through ADAM17-dependent ACE2 shedding. However, long-term PM exposure up-regulates the expression of another SARS-CoV-2 receptor CD147 in ocular surface tissues, accompanied by ocular surface damage and cytotoxicity. This study provides a new insight into uncovering potential risk factors for infection with SARS-CoV-2 via the ocular route.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ratos , Animais , COVID-19/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Material Particulado/metabolismo , Túnica Conjuntiva/metabolismo
15.
Int Immunopharmacol ; 128: 111484, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38199192

RESUMO

Fine particulate matter (PM2.5) represents a prevalent environmental pollutant in the atmosphere, capable of exerting deleterious effects on human health. Numerous studies have indicated a correlation between PM2.5 exposure and the development of chronic upper airway inflammatory diseases. The objective of this study was to investigate the impact of PM2.5 on the transcriptome of fibroblasts derived from nasal mucosa. Initially, nasal mucosa-derived fibroblasts were isolated, cultured, and subsequently stimulated with PM2.5 (100 µg/mL) or an equivalent volume of normal culture medium for a duration of 24 h. Following this, total RNA from these cells was extracted, purified, and subjected to sequencing using next-generation RNA sequencing technology. Differentially expressed genes (DEGs) were then identified and utilized for functional enrichment analysis. A protein-protein interaction (PPI) network of DEGs was constructed, and validation of key genes and proteins was carried out using quantitative real-time PCR and ELISA methods. Results revealed 426 DEGs, comprising 276 up-regulated genes and 150 down-regulated genes in nasal mucosa-derived fibroblasts treated with PM2.5 compared to control cells. Functional enrichment analysis indicated that DEGs were predominantly associated with inflammation-related pathways, including the IL-17 signaling pathway. In alignment with this, PPI analysis highlighted that hub genes were primarily involved in the regulation of the IL-17 signaling pathway. Subsequent validation through quantitative real-time PCR and ELISA confirmed significant alterations in the relative expressions of IL-17 signaling pathway-related genes and concentrations of IL-17 signaling pathway related proteins in nasal mucosa-derived fibroblasts treated with PM2.5 compared to control cells. In conclusion, PM2.5 intervention substantially altered the transcriptome of nasal mucosa-derived fibroblasts. Furthermore, PM2.5 has the potential to exacerbate the inflammatory responses of these fibroblasts by modulating the expression of key genes in the IL-17 signaling pathway.


Assuntos
Interleucina-17 , Mucosa Nasal , Humanos , Interleucina-17/metabolismo , Mucosa Nasal/metabolismo , Transdução de Sinais , Material Particulado/metabolismo , Fibroblastos/metabolismo
16.
PLoS One ; 19(1): e0292050, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241278

RESUMO

Recently, particulate matter (PM) has been shown to exacerbate atopic dermatitis (AD) by inducing an inflammatory response. Meanwhile, several studies revealed that exosomes derived from adipose tissue-derived mesenchymal stem cells promote wound healing and alleviate inflammation via their regenerative and immunomodulatory capacities. Our study aimed to investigate the effects of human adipose tissue-derived mesenchymal stem cell-derived (ASC)-exosomes in PM-induced AD. An AD-like triple-cell model was established by treating human keratinocytes, dermal fibroblasts, and mast cells with polyinosinic:polycytidylic acid (Poly I:C) and interleukin 1 alpha (IL-1α). The effects of PM and ASC-exosomes on the expression of pro-inflammatory cytokines and skin barrier proteins were examined using quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence. PM increased pro-inflammatory cytokines (IL-6, IL-1ß, and IL-1α) and decreased the anti-inflammatory cytokine IL-10, while the mRNA expression of skin barrier proteins (loricrin and filaggrin) decreased. However, when the cells were treated with ASC-exosomes, the PM-induced effects on pro-inflammatory cytokines and skin barrier proteins were reversed. Our results confirmed that PM-induced inflammation and skin barrier damage were alleviated by ASC-exosomes in our AD-like triple-cell model. These data suggest that ASC-exosomes can serve as a therapeutic agent for PM-exacerbated AD.


Assuntos
Dermatite Atópica , Exossomos , Humanos , Dermatite Atópica/terapia , Dermatite Atópica/tratamento farmacológico , Exossomos/metabolismo , Material Particulado/toxicidade , Material Particulado/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Tecido Adiposo/metabolismo , Pele/metabolismo
17.
Environ Pollut ; 341: 122997, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38000727

RESUMO

Exposure to air pollution fine particulate matter (PM2.5) aggravates respiratory and cardiovascular diseases. It has been proposed that PM2.5 uptake by alveolar macrophages promotes local inflammation that ignites a systemic response, but precise underlying mechanisms remain unclear. Here, we demonstrate that PM2.5 phagocytosis leads to NLRP3 inflammasome activation and subsequent release of the pro-inflammatory master cytokine IL-1ß. Inflammasome priming and assembly was time- and dose-dependent in inflammasome-reporter THP-1-ASC-GFP cells, and consistent across PM2.5 samples of variable chemical composition. While inflammasome activation was promoted by different PM2.5 surrogates, significant IL-1ß release could only be observed after stimulation with transition-metal rich Residual Oil Fly Ash (ROFA) particles. This effect was confirmed in primary human monocyte-derived macrophages and murine bone marrow-derived macrophages (BMDMs), and by confocal imaging of inflammasome-reporter ASC-Citrine BMDMs. IL-1ß release by ROFA was dependent on the NLRP3 inflammasome, as indicated by lack of IL-1ß production in ROFA-exposed NLRP3-deficient (Nlrp3-/-) BMDMs, and by specific NLRP3 inhibition with the pharmacological compound MCC950. In addition, while ROFA promoted the upregulation of pro-inflammatory gene expression and cytokines release, MCC950 reduced TNF-α, IL-6, and CCL2 production. Furthermore, inhibition of TNF-α with a neutralizing antibody decreased IL-1ß release in ROFA-exposed BMDMs. Using electron tomography, ROFA particles were observed inside intracellular vesicles and mitochondria, which showed signs of ultrastructural damage. Mechanistically, we identified lysosomal rupture, K+ efflux, and impaired mitochondrial function as important prerequisites for ROFA-mediated IL-1ß release. Interestingly, specific inhibition of superoxide anion production (O2•-) from mitochondrial respiratory Complex I, but not III, blunted IL-1ß release in ROFA-exposed BMDMs. Our findings unravel the mechanism by which PM2.5 promotes IL-1ß release in macrophages and provide a novel link between innate immune response and exposure to air pollution PM2.5.


Assuntos
Poluição do Ar , Inflamassomos , Humanos , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Material Particulado/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Cinza de Carvão/farmacologia
18.
J Mol Med (Berl) ; 102(1): 129-142, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994911

RESUMO

Air pollutant exposure leads to and exacerbates respiratory diseases. Particulate Matter (PM) is a major deleterious factor in the pathophysiology of asthma. Nonetheless, studies on the effects and mechanisms of exposure in the early life of mice remain unresolved. This study aimed to investigate changes in allergic phenotypes and effects on allergen-specific memory T cells resulting from co-exposure of mice in the early life to PM and house dust mites (HDM) and to explore the role of interleukin-23 (IL-23) in this process. PM and low-dose HDM were administered intranasally in 4-day-old C57BL/6 mice. After confirming an increase in IL-23 expression in mouse lung tissues, changes in the asthma phenotype and lung effector/memory Th2 or Th17 cells were evaluated after intranasal administration of anti-IL-23 antibody (Ab) during co-exposure to PM and HDM. Evaluation was performed up to 7 weeks after the last administration. Co-exposure to PM and low-dose HDM resulted in increases in airway hyperresponsiveness (AHR), eosinophils, neutrophils, and persistent Th2/Th17 effector/memory cells, which were all inhibited by anti-IL-23 Ab administration. When low-dose HDM was administered twice after a 7-week rest, mice exposed to PM and HDM during the previous early life period exhibited re-increases AHR, eosinophil count, HDM-specific IgG1, and effector/memory Th2 and Th17 cell populations. However, anti-IL-23 Ab administration during the early life period resulted in inhibition. Co-exposure to PM and low-dose HDM reinforced the allergic phenotypes and allergen-specific memory responses in early life of mice. During this process, IL-23 contributes to the enhancement of effector/memory Th2/Th17 cells and allergic phenotypes. KEY MESSAGES: PM-induced IL-23 expression, allergic responses in HDMinstilled mice of early life period. PM-induced effector/memory Th2/Th17 cells in HDMinstilled mice of early life period. Inhibition of IL-23 reduced the increase in allergic responses. Inhibition of IL-23 reduced the increase in allergic responses. After the resting period, HDM administration showed re-increase in allergic responses. Inhibition of IL-23 reduced the HDM-recall allergic responses.


Assuntos
Asma , Material Particulado , Animais , Camundongos , Material Particulado/efeitos adversos , Material Particulado/metabolismo , Interleucina-23/metabolismo , Camundongos Endogâmicos C57BL , Asma/genética , Pulmão/metabolismo , Alérgenos , Células Th2 , Suscetibilidade a Doenças , Citocinas/metabolismo , Modelos Animais de Doenças
19.
Environ Pollut ; 341: 122977, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38006993

RESUMO

Particulate matter with aerodynamic diameters of ≤2.5 µm (PM2.5) is associated with multiple organ damage, among which the influence of PM2.5 on the gastrointestinal system has been a recent focus of attention. In this study, four different types of PM2.5 exposure models are established to determine the occurrence of PM2.5 induced intestinal inflammation. In view of the abnormal expression of lymphocytes detected in the model and the well-known fact that the intestine is the largest immune organ, we focused on the intestinal immune system. A combined regulatory T cell (Treg) transplantation experiment demonstrated that PM2.5 induced intestinal inflammation by affecting the imbalance of regulatory T cell/T helper cell 17 (Treg/Th17). Since the intestine has the highest microbial content, and the results of the 16S rDNA third-generation sequencing analysis further revealed that the abundance of Lactobacillus_acidophilus (L.acidophilus) decreased significantly after PM2.5 exposure. The following mechanism study confirmed that L.acidophilus participated in an imbalance of Treg/Th17. Moreover, L.acidophilus supplementation successfully alleviated intestinal inflammation by regulated regulating the balance of Treg/Th17 under the background of PM2.5 exposure. Hence, this is a potential method to protect against intestinal inflammation induced by PM2.5.


Assuntos
Material Particulado , Linfócitos T Reguladores , Humanos , Material Particulado/toxicidade , Material Particulado/metabolismo , Células Th17 , Trato Gastrointestinal , Inflamação/induzido quimicamente , Inflamação/metabolismo
20.
Ecotoxicol Environ Saf ; 269: 115802, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091677

RESUMO

During respiration, particulate matter with a diameter of 2.5 µm or less (PM2.5) suspended in the atmosphere enters the terminal alveoli and blood. PM2.5 particles can attach to toxic substances, resulting in health problems. Limited information is available regarding the effects of prenatal exposure to water-soluble PM2.5 (WS-PM2.5) and water-insoluble PM2.5 (WI-PM2.5) on male reproduction. In addition, whether exposure to these particles has transgenerational effects remains unknown. We investigated whether prenatal exposure to WS-PM2.5 and WI-PM2.5 disrupts sperm function in generations F1, F2, and F3 of male mice. Pregnant BALB/c mice were treated using intratracheal instillation on gestation days 7, 11, and 15 with 10 mg of a water extract or insoluble PM2.5. On postnatal day 105, epididymal sperm count, motility, morphology, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) production, the sperm chromatin DNA fragmentation index (DFI), and testicular DNA methyltransferase (Dnmt) levels were evaluated in all generations. Whole-genome bisulfite sequencing was used to analyze the DNA methylation status of generation F3. According to the results, exposure to WS-PM2.5 affected sperm morphology, ROS production, and mean DFI in generation F1; ROS production and mean DFI in generation F2; and sperm morphology and MMP in generation F3. Similarly, exposure to WI-PM2.5 affected sperm morphology, ROS production, mean DFI, %DFI, and Dnmt1 expression in generation F1; sperm morphology, MMP, and ROS production in generation F2; and sperm morphology, ROS, and %DFI in generation F3. Two hypermethylated genes, PRR16 and TJP2, were observed in the WS-PM2.5 and WI-PM2.5 groups, two hypomethylated genes, NFATC1 and APOA5, were observed in the WS-PM2.5 group, and two hypomethylated genes, ZFP945 and GSE1, were observed in the WI-PM2.5 group. Hence, prenatal exposure to PM2.5 resulted in transgenerational epigenetic effects, which may explain certain phenotypic changes in male reproduction.


Assuntos
Metilação de DNA , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Feminino , Camundongos , Masculino , Animais , Epigênese Genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Taiwan , Sêmen , Espermatozoides , Material Particulado/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...